0%

647. Palindromic Substrings

O(n) manacher’s algorithm不会
brute force O(n2) time O(1) space
5. Longest Palindromic Substring一样,直接数数即可

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int countSubstrings(string s) {
int n = s.length();
int cnt = 0;
for (int i = 0; i < n; ++i) {
cnt += helper(s, i, i);
cnt += helper(s, i, i + 1);
}
return cnt;
}

int helper(const string &s, int l, int r) {
int cnt = 0;
for (int n = size(s); l >= 0 && r < n && s[l] == s[r]; ++cnt, --l, ++r);
return cnt;
}
};

划分型dp O(n2) time O(n2) space
isPalin[i][j] = s[i] == s[j] && isPalin[i + 1][j - 1]
f[i][j] = f[i][j - 1] + f[i + 1][j] - f[i + 1][j - 1] + isPalin[i][j]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
int countSubstrings(string s) {
int n = s.length();
vector<vector<int>> f(n, vector<int>(n));
vector<vector<bool>> isPalin(n, vector<bool>(n));
for (int i = 0; i < n; ++i) {
f[i][i] = 1;
isPalin[i][i] = true;
}
for (int i = 0; i < n - 1; ++i) {
isPalin[i][i + 1] = (s[i] == s[i + 1]);
f[i][i + 1] = 2 + isPalin[i][i + 1];
}
for (int len = 2; len < n; ++len) {
for (int i = 0; i < n - len; ++i) {
int j = i + len;
isPalin[i][j] = (s[i] == s[j] && isPalin[i + 1][j - 1]);
f[i][j] = f[i][j - 1] + f[i + 1][j] - f[i + 1][j - 1] + isPalin[i][j];
}
}
return f[0][n - 1];
}
};

其实没有必要维护一个计数的矩阵,直接用一个cnt就可以了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
int countSubstrings(string s) {
int n = s.length();
vector<vector<bool>> isPalin(n, vector<bool>(n));
for (int i = 0; i < n; ++i) {
isPalin[i][i] = true;
}
int cnt = n;
for (int i = 0; i < n - 1; ++i) {
isPalin[i][i + 1] = (s[i] == s[i + 1]);
cnt += isPalin[i][i + 1];
}
for (int len = 2; len < n; ++len) {
for (int i = 0; i < n - len; ++i) {
int j = i + len;
isPalin[i][j] = (s[i] == s[j] && isPalin[i + 1][j - 1]);
cnt += isPalin[i][j];
}
}
return cnt;
}
};