0%

1123. Lowest Common Ancestor of Deepest Leaves

postorder O(n) time O(h) space

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
dfs(root, 1);
return res;
}

int dfs(TreeNode *root, int depth) { // depth是从根到当前结点的深度,返回当前这棵树的深度
if (!root) return 0;
int l = dfs(root->left, depth + 1); // 子树的深度
int r = dfs(root->right, depth + 1);
if (l == r && depth + l >= mx) { // find the lowest root that covers all the deepest leaves
mx = depth + l;
res = root;
}
return max(l, r) + 1;
}

TreeNode *res = nullptr;
int mx = 0;
};

对于当前的这棵树,分别获取左子树和右子树的最深叶节点的lca以及最大深度,如果左右两边最大深度相等,则root是当前这棵树的最深叶节点的lca,返回root以及当前这棵树的最大深度;如果左右两边的最大深度不等,则返回深度较大的那个子树的结果以及当前这棵树的最大深度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
return dfs(root).first;
}

pair<TreeNode *, int> dfs(TreeNode *root) {
if (!root) return {root, 0};
auto l = dfs(root->left), r = dfs(root->right);
if (l.second == r.second) return {root, l.second + 1};
if (l.second > r.second) return {l.first, l.second + 1};
return {r.first, r.second + 1};
}
};

bfs O(n) time O(n) space

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lcaDeepestLeaves(TreeNode* root) {
if (!root) return root;
unordered_map<TreeNode *, TreeNode *> parent;
unordered_set<TreeNode *> s;
queue<TreeNode *> q{{root}};
while (!q.empty()) {
s.clear();
for (int i = q.size(); i > 0; --i) {
auto n = q.front(); q.pop();
s.insert(n);
if (n->left) {
q.push(n->left);
parent[n->left] = n;
}
if (n->right) {
q.push(n->right);
parent[n->right] = n;
}
}
}
while (s.size() > 1) {
unordered_set<TreeNode *> t;
t.swap(s);
for (auto n : t) {
s.insert(parent[n]);
}
}
return *begin(s);
}
};