0%

210. Course Schedule II

topological sort
bfs O(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
struct P { int indeg = 0; vector<int> children; };
vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
int n = numCourses;
vector<P> courses(n);
unordered_set<int> zero_indeg;
for (int i = 0; i < n; ++i) zero_indeg.insert(i);
for (const auto &p : prerequisites) {
courses[p.second].children.push_back(p.first);
++courses[p.first].indeg;
zero_indeg.erase(p.first);
}
vector<int> res;
while (!zero_indeg.empty()) {
int c = *zero_indeg.begin();
res.push_back(c);
zero_indeg.erase(c);
for (auto child : courses[c].children) {
--courses[child].indeg;
if (courses[child].indeg == 0) {
zero_indeg.insert(child);
}
}
}
if (res.size() < n) return {};
return res;
}
};

dfs O(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
n = numCourses;
visited.resize(n);
g.resize(n);
for (const auto &p : prerequisites) {
g[p[1]].push_back(p[0]);
}
for (int i = 0; i < n; ++i) {
if (dfs(i)) return {};
}
return vector<int>(rbegin(s), rend(s));
}

bool dfs(int c) {
if (visited[c] != 0) return visited[c] == -1;
visited[c] = -1;
for (auto child : g[c]) {
if (dfs(child)) return true;
}
visited[c] = 1;
s.push_back(c);
return false;
}

int n;
vector<int> visited;
vector<int> s;
vector<vector<int>> g;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
public:
vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
n = numCourses;
visited.resize(n);
g.resize(n);
for (const auto &p : prerequisites) {
g[p.second].push_back(p.first);
}
for (int i = 0; i < n; ++i) {
if (dfs(i)) return {}; // true意味着有圈
}
vector<int> res;
while (!s.empty()) {
res.push_back(s.top());
s.pop();
}
return res;
}

bool dfs(int c) {
if (visited[c] == 1) return false; // 1表示无圈已访问过,0表示未访问,-1表示不知道有没有圈但是已访问过
if (visited[c] == -1) return true; // -1说明有圈
visited[c] = -1;
for (auto child : g[c]) {
if (dfs(child)) return true;
}
visited[c] = 1;
s.push(c);
return false;
}

int n;
vector<int> visited;
stack<int> s;
vector<vector<int>> g;
};