0%

1110. Delete Nodes And Return Forest

O(n) time O(h + to_delete) space
判断是否需要删除需要hashtable
如果需要删除必须『真』删除,采用重新赋左右子的值的方法来删除
如果当前root需要删除,则把左右子树遍历删除后的结果尝试加入森林,所以需要后序遍历
如果当前root不需要删除,则update左右子之后返回即可(注意root并不一定是森林里的一棵树的根)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> delNodes(TreeNode* root, vector<int>& to_delete) {
for (int x : to_delete) {
s.insert(x);
}
auto ret = del(root);
if (ret) {
res.push_back(ret);
}
return res;
}

TreeNode *del(TreeNode *root) {
if (!root) return root;
auto l = del(root->left), r = del(root->right);
if (s.count(root->val)) {
if (l) {
res.push_back(l);
}
if (r) {
res.push_back(r);
}
return nullptr;
}
root->left = l;
root->right = r;
return root;
}

vector<TreeNode *> res;
unordered_set<int> s;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> delNodes(TreeNode* root, vector<int>& to_delete) {
for (int x : to_delete) {
s.insert(x);
}
TreeNode dummy;
dummy.left = root;
s.insert(0);
del(&dummy);
return res;
}

TreeNode *del(TreeNode *root) {
if (!root) return root;
auto l = del(root->left), r = del(root->right);
if (s.count(root->val)) {
if (l) {
res.push_back(l);
}
if (r) {
res.push_back(r);
}
return nullptr;
}
root->left = l;
root->right = r;
return root;
}

vector<TreeNode *> res;
unordered_set<int> s;
};